
,I*

A FAULT TREE MANUAL

RESEARCH REPORT
Presented in Partial Fulfillment of the Requirements

For the Degree Master of Engineering, IndustrialEngineering Department of Texas A&M University

by

Thomas W. DeLong

Approved by

Dr. W-.L. Jr rjton ' <
Co- arma CAChairma n'o

erno-n

r. R. Elliott-

Texas A&M University

1970

ISULAIMU NO TICE

.0

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT. NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

ABSTRACT

This paper is intended to give the reader a basic background

in the system safety technique of fault tree analysis and related

concepts. Four example problems illustrate the construction of

the tree, combination of probabilities, and use of Boolean

algebra. The description of simulation techniques provides a

bridge from simple example problems to actual complex systems.

LII

UNCLASSIFIED

Secut Classfcagtion

DOCUMENT CONTROL DATA - R & DO
i'so.•--t, classificaion ofi . bow at a •a- t and indx ing ennoetn must be eane-a wh.e Oh .overall repost in cl,..soldl

I. ORIGINATING A*. TIVI TY (C¢rpowt•. Ouhm; 2. REPORT SECURITY CLASSIFICATION

USAMC Intern Training Center - USALMC UNCLASSIFIED
Red River Army Depot ATTN: AMXMC-ITC-E-S b. GROUP

Texarkana, Texas 75501 N/A
3. REPORT TITLE

A FAULT TREE MANUAL
4- OC;SCRlPTIVR NOTES (Type of reor and incluo~iro dotvs)

N/A
IS. AU THOR($$) (First name, middle initial, last1 henow)

Thomas W. DeLong

0. REPORT DATE 75. TOTAL NO. OF PAGES lb. NO. OF REFS

Dec 70 58 24
So. CONTRACT OR GRANT NO. Os. ORIGINATOR-S REPORT NUllEM(SI

N/A N/A
b. PROJECT NO.

C9b. OTHER REPORT NO(S0 (Any oM•r MINbe "t ~y IN as"ioved
this rport)

C N/A
10. OISTRIDUTION STATEMENT

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES T 12, SPONSORING MILITARY ACTIVITY

N/A I Safety Office
I Headquarters, US Army Materiel Command
_ Washington, D. C. 20315

13. AGSTRACT

This paper is intended to give the reader a basic background in the system
safety technique of fault tree analysis and related concepts. Four example problems
illustrate the construction of the tree, combination of probabilities, and use of
Boolean algebra. The description of simulation techniques provides a bridge from
simple example problems to actual complex systems.

NATIONAL TECHNICAL
INFORMATION SERVICE

S P""r+ h ld VA 72151

roDD0 1473I ""=" -"" ". ""' ""s
DD, No eel 473 an 0 s. I A 5oo I UNCLASSIFIE) ,9

security UassifICUoO

I

ACKNOWLEDGMENTS

I wish to thank Dr. W. L. Johnston for help and guidance

throughout this project. Dr. Johnston was a vital and necessary

influence from start to finish.

Also, I was privileged and grateful to receive assistance

from Dr. R. J. Vernon, one of the most inspiring teachers I have

known.

VP

ili

CONTENTS

Chapter Page

I INTRODUCTION 1

II LITERATURE REVIEW 6

III CONSTRUCTION OF A FAULT TREE 9

1. Introduction 9

2. Define the Event 9

3. Understand the System 10

4. Construct the Tree 11

4.1 Events. 11

4.2 Logic Gates 13

4.3 Special Symbols 15

5. Collect Quantitative Failure Data 18

IV MATHEMATICS OF SIMPLIFICATION 20

1. Introduction 20

2. Probability Techniques 20

3. Boolean Algebra 27

V EXAMPLES 33

Introduction 33

Example One 35

Example Two 40

Example Three 42

Example Four 44

iv

CONTENTS (continued)

Chapter Page

VI COMPUTER TECHNIQUES. 46

BIBLIOGRAPHY 50

v

FIGURES

Figure Page

1 EXAMPLE TREE 4

2 EVENTS 12

3 BASIC GATES AND ELECTRIC SWITCH ANALOGIES 14

4 MODIFIED GATES 16

5 SPECIAL SYMBOLS 17

6 VENN DIAGRAMS 22

7 EXAMPLE OF ELLIPSE SYMBOL 26

8 BOOLEAN IDENTITIES 30

9 BOOLEAN SIMPLIFICATION EXAMPLE 31

10 EXAMPLE ONE DATA 37

11 EXAMPLE ONE FAULT TREE 38

12 EXAMPLE ONE LOGIC TREE 39

13 EXAMPLE TWO FAULT TREE 41

14 EXAMPLE THREE FAULT TREE 43

15 EXAMPLE FOUR FAULT TREE 45

vi

TABLES

Table Page
I OR GATE APPROXIMATIONS• 23

2 BOOLEAN OPERATIONS 28

vii

t

CHAPTER I

INTRODUCTION

The problems involved in the design of a complex system are

almost overwhelming. A successful design effort includes accurately

predicting characteristics such as reliability and performance,

and skillfully anticipating problems of maintenance and safety.

This paper describes one of the safety analysis techniques used

in the design process. The technique, called fault tree analysis,

4 is a valuable addition to other methods used in pre-production

safety studies.

Safety analysis techniques include investigation of all

energy sources for possible hazards, study of subsystem interfaces,

alarm systems, and other parts of hardware for known hazards.

Fault tree analysis uses a different approach. Instead of being

hardware orientated, fault tree analysis is failure orientated;

that is, it examines a particular system failure for all possible

causes. Control of the system failure through knowledge of its

causes is the analysis objective.

Like other techniques, fault tree analysis begins at the

conception stage and is completed before production begins so that

safety improvements are designed into the system. Two outstanding

strengU;, at. the clrity ur subsysteni intf..,-clati:7 shown by

2

the tree, and the fact that the tree can be quantified. These

two strengths will become obvious in the examples of Chapter V.

The fault tree technique was developed eight years ago and

has been used in aerospace and military applications since then.

The analysis is now taught in several system safety courses, such

as those given periodically by the National Safety Council,

Picatinny Arsenal, and the University of Washington. In addition,

many excellent published articles give descriptions of the tech-

nique, but some are very general, others primarily describe the

probabilities, or perhaps only the Boolean aspects of the mathe-

matics. Few are well rounded and comprehensive, therefore it is

difficult to get a good overall explanation of fault tree analysis

by reading a single article. This manual presents a general basic

background of the concept and associated techniques, including

steps in construction of a tree, quantification with probabilities,

math simplification of probabilities by classical methods and by

Boolean algebra, and computer applications. This paper is designed

to give a good fault tree background to safety engineering

students.

Although the concepts of fault tree analysis are simple,

the applications are complex. The Army Materiel Command will

use the technique for analysis of systems having research and

development and test and evaluation budgets of several million

dollars. The examples in this manual are simple, yet they serve

the purpose of this paper by presenting techniques necessary for

3

larger trees.

At this point, a description of the tree may help orientate

the reader (see Figure 1). The tree is a graphical representation

of possible causes of a major failure which appears at the top

of the tree. During construction, the tree grows downward and

outward as failures and causes are described in increasing detail.

When the tree is completed, probabilities are associated with the

failures lowest on the tree. The assigned probabilities are

combined as dictated by logic gates to give probabilities for

events higher on the tree. The combination of probabilities

continues until the complex top event has a probability calculated

from the more accurate component data at the bottom of the tree.

Two kinds of reasoning are involved: the thought processes

involved in construction produce a downward flow, whereas the

evaluation of probability and operation of the logic gates dictate

an upward flow. Further discussion of the nature of the tree is

postponed until Chapter III.

Chapter II considers the history of the technique and

comments on references. Following that background information,

Chapter III describes steps in construction of a tree. The two

tree components, events and gates, are described verbally and

illustrated graphically. Chapter IV explains math techniques in-

cluding probability, approximations, and Boolean algebra. The four

examples in Chapter V illustrate construction of a tree from a

verbal description of a system, and the application of the math

A J,

Top Event

Logic Gore

!Eicnts

*Gates

Bottom Events

Figure I. Example Tree

5

techniques described in Chapter IV. Chapter VI is a bridge t
complex problems requiring computer simulation.

9

CHAPTER II

LITERATURE REVIEW

The fault tree method resulted from a contract between the

Air Force Ballistics Systems Division and Bell Telephone Labora-

tories for the study of inadvertant launch in the Minuteman ICBM.

The Launch Control Safety Study (1962) first described fault tree

analysis in Volume I Section VII "Method of Inadvertant Launch

Control Analysis". Minuteman I was in production when the study

was completed, therefore no design changes resulted from the study,

but results were so close to observed data that the technique was

used in design of Minuteman II. Since then, fault tree analysis

has been used in combination with other techniques to predict and

improve safety performance in complex aerospace and military

systems.

After initial work at Bell Telephone Laboratories, develop-

ment of fault tree continued at the Boeing Company, where the

technique was applied to manned aircraft and simulation techniques

were used extensively. Boeing and AVCO published fault tree re-

ports on the Minuteman II system in March 1963 and January 1964

respectively. In June of 1965, Boeing and the University of Washing-

tun co-sponsored a System Safety Symposium in Seattle. Five of

the presentations were fault tree articles by Boeing employees

6

t7

(Feutz, Haasl, Kanda, Michels, and Nagel). A paper by Mearns of

Bell Telephone Laboratories also described fault tree. These six

papers and the Launch Control Safety Study are the main references

cited in articles after 1965. (All articles mentioned in the text

are referenced in the Bibliography. The Proceedings of the

System Safety Symposium contain all the talks of the Symposium,

including the six fault tree articles.)

Fault tree articles range widely in complexity and compre-

hensiveness. Recht's article (1966) reprinted from the National

Safety News by the National Safety Council, is an excellent non-

mathematical introduction to the technique. The articles by

Hiltz (1965) and by Larsen (1968) both present Boolean algebra

very early in the discussion, then use only AND and OR gates,

which correspond to the Boolean operations lf "*" and "+". Hixen-

baugh's article (1968) is an excellent reference for simulation

processes and very specialized logic gates mentioned in no other

references of the Bibliography. The paper by McDivitt, Goldberg,

and Cornwell (1968) is an excellent example of application to a

real system. The paper considers accident stimuli and damage

potential in what the authors designate a hazard tree of failures

associated with large rocket motors.

A recent suggestion to change the name of the technique from

fault tree analysis to perhaps causal tree should be mentioned

here. Since the purpose of analysis is not to find fault, but to

systematically reduce causes of failures or hazards, perhaps

8

several years from now causal tree will be the accepted name of

the technique. This paper will use the term fault tree, which is

used in the references, except for a few cases of hazard tree,

which includes information about the degree of the hazard as well

as the causes.

At in industry, use of the fault tree in the Army Materiel

Command is still rather limited. The U. S. Army Missile Command

t'ses the analysis much more than any other major commodity command.

In the future, Army contracts will specify that fault tree analysis

be done on complex systems of any type, missile, automotive,

electronic, etc. This trend toward specification of safety in

general and fault tree analysis specificilly means ti.it the safety

engineers of the Army Materiel Command must be familiar with the

use of various analysis techniques. These men serve a unique role

by specifying safety analyses and performance in contracts, then

reviewing engineering reports submitted according to those contracts.

This manual is intended to aid in the training of safety

engineers of the Army Materiel Command by presenting many concepts

associated with fault tree analysis. The first concept, of course,

is the tree itself, discussed in the next chapter.

CHAPTER III

CONSTRUCTION OF A FAULT TREE

1. Introduction

The six steps of fault tree analysis given by Hixenbaugh

(1968) are discussed in this and the following chapter. The steps

are:

1. Define the event to be investigated by the tree

2. Gain an understanding of the system

3. Construct the tree

4. Collect quantitative data

5. Evaluate the probability of the event chosen in step 1

6. Analyze computer output

Steps one through four are discussed in this chapter, step five

in the next, and techniques from both chapters are illustrated in

the examples of Chapter V. Chapter VI discusses the sixth step.

Before continuing with the elaboration of these steps, the reader

should look at the structure of the samples in Chapter V to note

the symbols, events, and probabilities.

2. Define the Event

The top event of the tree should be well defined in terms of

operating mode of the system, environmental conditions and time

limits. However, the failure must represent a major system mal-

9

10

function which threatens personnel or equipment. The undesired

failure in the original fault tree was an inadvertant launch of

the Minuteman Intercontinental Ballistic Missile. Other possible

examples are failure of a plane to remain on the runway before

takeoff, or as in example one, failure to perform the system ob-

jective.

Care in choosing the event will be fruitful because the tree

paves the way for improving the safety of the system (reducing the

probability of the chosen failure) through redesign of subsystems

and components which the analysis indicates are most likely causes

of failure. Hence the only subsystems investigated are possible

contributors to the failure chosen in this step. Selection of a

minor failure in this step would exclude much of the system from

scrutiny and the analysis would have lower significance.

3. Understand the System

The second step is understanding the system as it functions

under conditions specified in step one. This includes the com-

ponent interaction, hardware requirements, and necessarv software.

Several procedures helpful in this step are: listing the sequence

of events necessary for successful operation of the system; enumer-

ation of performance requirements and safety regulations; listing

of failure modes and probabilities for each component; and con-

struction of block diagrams of the system and system functions.

Producing these lists often require design men from several disci-

r - - llml~lmll• mmmllmm mmmmmmmulmmmmll-

P 11

plines including electronics, hydraulics, and mechanics. Often

several different companies will be involved as subcontractors.

This step is a good reminder of the magnitude of the effort and

co-ordination required in fault tree analysis.

4. Construct the Tree

Tree construction is a logical process producing a graphic

display of events such that all possible causes of a particular

failure are shown below that failure. This process starts at the

top of the tree, with the failure chosen in step one described in

terms of major subsystem failures shown immediately below. These

t subsystem failures are further subdivided and explained in greater

detail until the bottom of the tree is reached. The bottom events

are failures of basic components which can be associated with a

probability.

Since the fault tree is graphical as well as verbal, and

several people at separate locations and at different times may

contribute, generally accepted symbols are necessary to represent

differences in events and logic relationships. The following

sections describe events, logic gates, and special symbols, all of

which are illustrated in Figures 2 through 5.

4.1 Events: Four kinds of events are represented by the

four symbols in Figure 2. A circle represents a clearly defined

failure of a basic component. In contrast to the clarity repre-

sented by the circle is the uncertainty associated with a diamond

12

Q Basic component failure

Circle

SFailure undeveloped due to lack of
information or lack of significance

Diamond

SNormally occuring event
probability close to one

House

E Combination of other three events
does not appear at lowest level
of tree

Rectangle

Figure 2. Events

t 13

event, which is a failure not well understood because of absence

of information or significance. Normal, frequently occuring events,

are symbolized by a house-shaped figure. Finally, several events

combined together by a logic gate form a combination event repre-

sented by a rectangle.

4.2 Logic Gates: Many different logic gates are used to

combine events, but three simple ones are sufficient. These three,

AND, OR and INHIBIT are illustrated in Figure 3 with their electric

switch analogy. Note that the inputs enter from below and the

output comes from the top of the gate. The AND gate produces an

output if all of the inputs exist simultaneously. The OR gate pro-

duces an output when at least one of the input conditions occur.

These two gates are the same as ordinary usage of the words "and"

and "or". The INHIBIT gate produces an output when the input is

present and the specified condition exists. In other words, the

output is "inhibited" by lack of the stated condition. The

INHIBIT gate can be compared to FORTRAN's logical IF statement.

The FORTRAN statement "IF (A EQ. B) GO TO 1030" states that if

the condition A equals B is satisfied, go to statement number 1030.

If the condition is not satisfied, continue in normal sequence.

A RANDOM EXHIBIT gate is a variation of the INHIBIT gate.

In this variation, the functional condition is replaced by a

probability that the input will produce an output. The probability

is stated in an ellipse attached to the hexigon.

14

AND GATE

output if
all inputs inputs

_are present output
if all
switches
closed

inputs output
OR GATE if at least

one switch

output if is closed
any inputs

aepresent

inputs
inputs

INHIBIT GATES

output if output
input end input if switch
condition exist is closed

and battery
workingconiton

input necessary
-input for output ?

• fraction of

time that input
produces output

Figure 3. Basic Gates and Electric Switch Analogies

15

For many situations, the three primary gates are awkward,

although sufficient. Several modifications, created for convenience,

are shown in Figure 4 and described below.

The PRIORITY AND gate puts a restriction on the sequence of

inputs to an AND gate which produce an output. An excellent

example is a device which requires a pulse and a direct current

voltage to produce an output. If the pulse occurs (voltage rises

and falls) before the direct current is turned on, no output is

produced because the inputs did not co-exist. On the other hand,

if the voltage is applied before the pulse, an output occurs. A

PRIORITY AND gate would specify that the direct current voltage

must come before the pulse for output.

The OR gate is modified by restricting certain specified

combinations of inputs from producing outputs. A general form of

the RESTRICTED OR gate is called the MATRIX gate, which produces

an output for input combinations shown in an accompanying matrix.

At the bottom of Figure 4, the MATRIX gate is used as an RESTRICTED

OR gate for which no output occurs for the three conditions: no

input, all three inputs, and inputs A and C without B.

The MATRIX gate is also shown being used as an AND gate for two

inputs.

4.3 Special Symbols: Shown in Figure 5, three special

symbols representing parts of trees are used to reduce redundancy.

These are the last set of symbols presented for construction of a

16

description of PRIORITY AND
priority

restriction on
input combinations RESTRICTED OR
producing output

accompanying MATRIX
shows combination
of inputs producing MTRIXI I Ioutput

Not A A
l Not B

No B_- A MATRIX used as AND
B I B B XB
AAB

ABNot._A A
Not BNot ot B B MATRIX usedas RESTRICTED

Not C X Not C X X OR fiveB AB out of eight
Z4 X possibilities

A B C C c BC C AC ABC produce output

Output for

A, B, C, A & B, or B & C

No output for
no input, A & C or all three inputs

Figure 4. Modified Gates

17

a
HEXAGON

to repeat
separate tree

a a

*
TRIANGLE

b _to repeat portion
of same tree

n • n ELLIPSE

to indicate n
identical
components

one of identical
failures describee
by event

F
Figure 5. Special Symbols

18

tree.

The hexagon refers to another fault tree which is substituted

where the symbol appears. A good use for this symbol would be in

example one of Chapter V at the diamond which states "receiver

fails". This failure would be elaborated in a complex fault tree

headed by a hexagon. The diamond of example one would be changed

to a hexagon and both six sided figures would bear the same letter.

To repeat another portion of the same tree, a pair of

triangles is used as illustrated. The portion of the tree below

the triangle on the left is substituted at the point where the

triangle on the right appears.

The last special symbol indicates identical components either

in series or parallel. In this case only one component is men-

tioned and the redundancy is shown by an ellipse around the output.

The number of components is writtcn beside the symbol.

5. Collect Quantitative Failure Data

The above symbols and gates are sufficient for construction

of any elementary fault tree. The next analysis step is the

collection of probabilities for the lowest events of the tree.

These probabilities come from experience, tests, published data

(such as MIL HDBK 217A Reliability Stress and Failure Rate Data

for Electronic Equipment, U.S. Government Printing Office) or

engineering judgment. These probabilities are combined up the tree

by logic gates to calculate probabilities for each event. Tech-

19

niques of combining and simplifying probabilities are covered in

the next chapter.

9

CHAPTER IV.

MATHEMATICS OF SIMPLIFICATION

1. Introduction

After probabilities are assigned to the bottom events, the

next task is to combine the probabilities until the top event is

reached. This chapter discusses two general categories of combina-

tion techniques. The first, applicable to independent events,

consists of classical probability techniques in which the proba-

bility of the combination event depends on the logic gate as well

as the input probabilities. The second method, Boolean algebra,

can be used only with AND and OR gates. Boolean algebra is useful

for eliminating events which appear more than once on the lowest

level of the tree.

2. Probability Techniques

Consider the AND gate. If A and B are independent 1

input events and event A occurs with probability P(A) and 8

occurs with probability P(B), the probability of output from the

AND gate is P(A)*P(B). This is the probability of both inputs

Ilndependence means the occurence of event A will not alter

P(B) and the occurence of B will not alter P(A).

20

21

occuring. The situation is illustrated with a Venn diagram2

(top of Figure 6) of unit area containing overlapping circles A

and B. The area of circle A is P(A), likewise circle B has

area P(B). The independence condition specifies the area of

overlap (cross hatched area in the Venn diagram) is P(A)*P(B).

An OR gate with independent inputs A and B (again with

probabilities P(A) and P(B)) produces an output when one or

the other or both inputs occur. The probability of output is

P(A) + P(B) - P(A)*P(B). Referring to the same Venn diagram used

above, the area within the heavy outer line is the output proba-

bility. The cross hatched area of overlap is subtracted in the

output expression because it is counted twice, once in P(A)

and once in P(B).

An approximation is used for the output of an OR gate when the

input failure probabilities are small. For small P(A) and P(B)

the pro ict P(A)*P(B) is a corresponding order of magnitude

smaller than either input, and the product carn be ignored with small

error. Table 1 shows the approximation for probabilities of 1%

and 1/10%. Clearly the approximation is better for small probabili-

ties. In any event, the approximation is larger than the actual

value, hence the simpler form will not give false optimistic values.

2Consult an algebra or statistics text for a description of
Venn diagrams, for example appendix B of Concepts of Probability
T by Paul E. Pfeiffer, McGraw-Hill Book Company, New York,

1965..- -. ,. -- -- -..- -(

22

A B

)*P(B) P(A) + P(B) - P(A)*P(B)

I

PPA

(AB

P(A) P(B) (A) (B)

AFB
1 2 7

3
4 6

5ci

Figure 6. Venn Diagrams

1 23

TABLE 1

OR Gate Approximations

Actual Approximation Error
A+B-A*B A+B A*B

t 0.01 0.10 0.109 0.11 0.001

0.01 0.01 0.0199 0.02 0.0001

0.001 0.01 0.01099 0.011 0.00001

WWh

24

For an OR gate with three independent inputs (A, B, and

C with probabilities P(A), (B), and P(C)) the approximation

is P(A) + P(B) + P(C) whereas the actual output probability is

P(A) + P(B) + P(C) - P(A)*P(B) - P(A)*P(C) - P(B)*P(C) +

P(A)*P(B)*P(C). The actual output probability can be visualized

by the Venn diagram at the bottom of Figure 6. The output proba-

bility is the sum of areas one through seven. The approximation

counts areas two, four, and six twice, and area three three times.

Subtracting the three products leaves areas two, four, and six

counted once, but area three not at all. Adding the product of

the three probabilities completes the expression for the area

enclosed by the heavy outer lines. That area is the actual

output probability.

The three input OR gate approximation is used in the first

tree in example one to approximate the probability of system

failure. The second tree in example one uses no approximations

to find the probability of system success. The sum of the

probability for success and failure is greater than one because

of the inflated failure figure. The excess above one is shown to

be the approximation error for the OR gate. In this example, the

error is about four percent.

The output probability for a two input PRIORITY AND gate is

somewhat less than the product of the input probabilities. The

size of the reduction depends on the chance of the specified fail-

25

ure happening first. A mathematical discussion is presented in

the article by Gilmore, Woodcock, and Jewell (1964).

When the INHIBIT gate serves the function of a PRIORITY AND

gate, its output Is calculated the same way. In a RANDOM INHIBIT

gate, the input probability is multiplied by the probability the

input will not be inhibited.

The RESTRICTED OR gate and the MATRIX gate are treated as

combinations of AND and OR gates (see example three).

When n elements function in parallel such that all elements

must fail before the parallel combination fails, the AND gate is

used. The output of the AND gate is the product of the inputs

(see Figure 7). When the n elements are identical, the ellipse

symbol, shown in Figure 5, is used to indicate redundancy and only

one input to the AND gate is shown. The output probability is the

input probability to the nth power, that is, the product of n

identical inputs.

With n identical elements in series, failure of at least one

element causes failure of the series. An ellipse may be used

above an OR gate to represent the situation. The approximate

output probability would be the failure probability of one

element (p) times n. This approximation becomes unsatisfactory

as n and p become large. If p = .3 and n = 5 the approxi-

mation says the combination fails 150% of the time. The exact

output probability is 1-(l-p)n fraction of the time. Using

p = .3 and n = 5, the actual failure probability is about .17,

26

A BC

No Probability N Probability
Light P(A)*P(B)*P(C) Light (P(A))l b f

all bulbs are

31dentical

A Fails
(all bulbs identical)

A . CFails Fails Fails

Figure 7. Example of Ellipse Symbol

27

not 1.5 as the approximation predicts.

Several simple approximations are based on relative size of

inputs. A very small input (in relation to the others) to an OR

gate can be ignored. An input probability close to one in an AND

gate can be ignored. An extremely small input to an AND gate means

the whole gate and its output can be ignored.

3. Boolean Algebra

The above simplifications are adequate when independent

events appear at the lowest level of the tree; however, a different

approach is needed when an event appears more than once at the

lowest level. One effective approach is Boolean algebra which is

briefly described here.

The key to understanding the simplest form of Boolean algebra

is that variables may assume one of two values, zero or one.

Three symbols are used, an equivalence relation3 as well as two

operations "+" and "*", which correspond to OR and AND

respectively. In Table 2, the two operations combine zero's,

one's and a variable A (which may take on either value). The

last concept needed is that each element a has a unique inverse

a' such that if a = 0, a' = 1 and if a = 1 then a' = 0.

Also a" = a.

Understanding the equivalence relation, both operations, and

3An equivalence relation is reflexive (a-a), symmetric
(if a=b then b-a), and transitive (if a-b and b-c, then a=c).

28

TABLE 2

Boolean Operations

OR "+" AND "

0 1 A 0 1 A

0 0 1 A 0 0 0 0

1 1 1 1 1 0 1 A

A AI I A A 0 A A

The above tables apply whether A takes

on value of 0 or 1

Same as a

b a a*b a + a*b

0 0 0 0

1 0 0 0

0 1 0 1

1 1 1 1

29

the inverse, the reader should study the identities given in

Figure 8, remembering that the variables a, b, and c may assume

only values of zero or one. Also it may be helpful to refer back

to Table 2 for the definition of "+" and "*".

Identity lOa of Figure 8 is so useful in simplifying fault

trees that it will be explained here. It a = 1, then a + a*b = 1,

no matter what value b assumes. On the other hand, if a = 0,

then a + a*b will equal zero, so the value of a dictates the value

of a + a*b. In Table 2 this identity is shown to be true for all

possible values of a and b.

Using the identity a + a*b = a, the unusual form of the

distributive law (identity 7b) is verified in Figure 8. The

applicable identities used in each step are shown to the right.

An important principle called duality says that a valid

Boolean identity is still valid if "'" is changed to "*", "*"

changed to 'Y+, zero changed to one, and onp is changed to zero.

Note that each of the identities of Figure 8 is presented with its

dual on the same line. The duality principle is powerful because

proving an identity also proves the dual of that identity.

Although duality is important in Boolean algebra, it is not necessa-

ry for fault tree use. It is presented here only to give more

insight into Boolean algebra.

An application of Boolean algebra to fault tree simplifica-

tion given by Gilmore et al. (1964) is shown here in Figure 9.

Since the event B is an input to two gates, the lowest events

30

la a*a' 0 lb a + a'

2a a*l = a 2b a + 0 = a

3a a*O = 0 3b a + 1 = 1

4a a*a = a 4b a + a = a

5a a*bf= b*a 5b a + b = b + a
commutative law

6a a*(b*c) = (a*b)*c 6b a + (b + c) = (a + b) + c
associative law

7a a*(b + c) = a*b + a*c 7b a + (b*c) = (a + b)*(a + c)
distributive law

8a (a + b)'= a'*b' 8b (a*b)'= a' + b'
OeMorgan's law

9a a+ (a'*b) = a + b 9b a*(a' + b) a a*b

1Oa a + a*b = a lOb a*(a + b) = a

Proof that: a + b*c = (a + b) * (a + c) Identity 7b

(a + b)*(a + c) = a*a + a*c + b*a + b*c

= a + a*c + a*b + b*c 4a and 5a

* a + a*b + b*c lOa

= a + b*c lOa again

Figure 8. Boolean Identities

31

F = (A*B) + B + C (classical)
F v8+ CBoolean

simplification

Figure 9. Boolean Simplification Example

32

(A, B, B,,and C) are not independent. To simplify by the classical

method (which is not correct here), the two equations D - A*B

and E = B + C are ORed (using the approximation for both OR

gates) to give F = A*B + B + C. Notice that a Boolean simplifi-

cation (B + B*A = B) of F gives F = B + C.

Consider the diagram to see why A*B is unnecessary. If input

B occurs (the variable B takes on the value one) the event E

will occur producing F. The event B travels through both OR

gates regardless of A and C. What if B does not occur?

The AND gate cannot produce an output without input B, but C

is sufficient to produce events E and F. Because of the system's

nature, A is unnecessary. Event A may occur or not, without

affecting F.

The example above illustrates simplification of repeated

inputs. The procedure is to write events in symbolic form and

apply Boolean simplification whenever possible. This simplifi-

cation procedure will be used in the third and fourth examples

of the following chapter. Bowran (1965) and Arnold (1962) are

two sources of more detailed Boolean algebra discussions.

t

CHAPTER V

EXAMPLES

Introduction

The four examples in this chapter are designed to assist the

reader in digesting information from Chapters III and IV. The

first example demonstrates setting up a tree from knowledge of the

system. First the components are discussed, followed by a list of

successful events necessary for system success. In addition to a

fault tree describing system failure, a similar logic *.-je des-

cribing system success is added to illustrate the OR gate approxi-

mation. Probabilities are given for the bottom events and calculated

for the top event.

The second example illustrates an undeveloped use of the fault

tree. This tree points out possible errors made by a photographer

whose pictures come back from the developer over or under exposed.

The tree examines only possible operator mistakes, no probabilities

are used.

The third example uses more complicated gates and some Boolean

algebra simplification. Events are symbolized by letters without

probabilities. Only the tree is presented, no attempt is made to

relate the tree to a physical system.

* The last example is also a tree only. It uses AND and OR

33

34

gates exclusively, and Boolean simplification.

I.

35

Example One

This example is a hypothetical information processing system

illustrated in Figure 10. The fault tree analysis is concerned

with accurate transmission of answers, which affect the safety

of another system. The system receives data and transmits answers

calculated by man or computer. Normally the computer performs

calculations with one hundred percent accuracy, but a buzzer is

provided to ring when the computer is not working and cannot supply

an answer. Each time the buzzer rings the man overrides the com-

puter and calculates the answer himself, but the buzzer can fail

in two ways. When the computer is working, sometimes the buzzer

will sound, causing the man to override the computer unnecessarily;

when the computer is not working, sometimes the buzzer will fail to

sound, resulting in no answer being transmitted The probabilities

of the components working as designed are shown in Figure 10.

For correct output, the data must be correctly received. In

addition, the computer must perform correctly, without the buzzer

ringing. If the buzzer rings, the man must calculate accurately,

and finally, the transmitter must work correctly.

The event investigated by the fault tree is failure to trans-

mit the correct answer when data is received under normal conditions

(the table of probabilities apply).

A preliminary calculation is required to find what fraction of

the time the buzzer rings. This fraction is the probability that

36

the man will override the computer and calculate the answer himself.

The calculations are shown in Figure 10.

Figure 11 is a fault tree of the system. Notice that the

probability for the failure is conservative (slightly high)

because of the OR gate approximation. Figure 12 is a logic tree

computing the probability of system success. It gives an accurate

answer because no regular OR gates are used. Below the logic tree

of Figure 12, the probability for success and failure are added

and the excess above one is shown to be the OR gate approximation

for the fault tree of Figure 10. Notice that the error is due only

to the top OR gate. The other OR gate (RESTRICTED OR) gives the

correct answer by adding both inputs because it is impossible for

the computer and the man to both give an answer (incorrect or

otherwise).

Inspection of the fault tree's probabilities show the trans-

mitter is responsible for nearly two-thirds of all system failures,

and the receiver is responsible for a majority of the remaining

failures. Improvement of the system would probably start with one

of these two components, taking cost into consideration.

II
t 37

RECEIVERI :COMPUTER I >JTRANSMITTER N
IBUZZER/

MAN

(overrides
computer)

% of Time
Component Task Tast Completed

receiver receives correctly 95

buzzer buzz when computer "down" 90

ouzzer no buzz when computer works 99

computer. works 99

tman calculates correctly 60

transmitter transmits accurately 90

Buzzer rings

computer works and buzzer fails or computer "down" and buzzer
.99 * .01 + .01 * .90 works

.0099 + .0090 = .0189

Buzzer will not ring
computer works and buzzer works or computer "down" and buzzer fails

.99 * .gg + .01 * .10

.9801 + .001 = .9811

Figure 10. Example One Data

38

fails to transmit correct answer .15856

incorrect

reevrcalculation .086transmitterreceiver fails

fails . 0l
.05 both cannot supply wrong

answer because of override

mncalcu- computer faill
ates wrong .00756 with no alarms .001

buzzer man computer buzzer does
rings calculates down not ring when
.0189 wrong .01 computer is down

.4 .10

Figure 11. Example One Fault Tree

19 39

correct answer 95*90*99144 a .8476812
transmitted

correct
answer 1.99144

receiver calculated transmitter
works works

.95 both inputs .90
impossible

man
supplies
correct .01134 somupplesr 90

answert

buzzer man computer buzzer does not
rings calculates working ring when computer

.0189 correctly .99 working
.60 .99

Correction from Figure 10

.8476812 -. 005 receiver and transmitter

.15856 (Fig. 10) -. 000856 answer and transmitter
1.0062412 -. 000428 answer and receiver

-. 006284 second order correction
-. 0000428 third order correction
-. 0062412 TOTAL ERROR

Figure 12. Example One Logic Tree

40

Example Two

The second example illustrates fault tree analysis in an

undeveloped application; that is instructions for operators.

This tree describes conditions which may cause a poor picture for

an amateur photographer, who has his film sent away for automatic

developing. The event under consideration is the return of poor

pictures, assuming the camera had film and was operative. The

three operator responsibilities considered are film speed, shutter

speed and aperture opening. These are factors built into the camera

but controlled by the operator.

Causes for underexposure and overexposure are described in

terms of improper operator settings. No probabilities are given,

the tree in this application shows only causes.

Fault trees have much undeveloped potential in the general

area of operator instructions. One tree can present an overview

of maintenance, troubleshooting, or operating instructions. The

value of a graphical presentation (such as a tree) is in the speed

and clarity of understanding. More detailed instructions are

necessary, but the tree can present each alternative in perspective,

much like a chain of command block diagram.

Sm - • m-m mmmmm •n m m•w~ mm mWAl

41

lexposed exposed

/ setting film re- settingp iesponsible sponsible respons.

lens

rect
o

wrong setting
f Im setting1 fim n

shutter aperturetoo fast too small shutter aperture
too slow too

large

Figure 13. Example Two Fault Tree

42

Example Three

The third example is a tree only; no attempt is made to relate

tne structure to a real system. The events are represented by

by letters which are used in Boolean equations to evaluate the

top event. Because Boolean algebra has only two operations, there

is a difficulty with the ellipse symbol and the PRIORITY AND. These

two gates are not involved in Boolean simplification in this

example, however their probabilities occur in the expression for

the top event.

The MATRIX gate is accompanied by a matrix that shows output

is produced for any combination of two or more inputs, but no

output is produced for any single input. The case of three simul-

taneous inputs is immediately eliminated by Boolean simplification.

The PRIORITY AND gate has inputs F and G. It is equally

likely that event F wvill precede event G, or G will precede

F, hence the probability of output is 1/2 P(G)*P(F). The right-

most AND gate with the ellipse around the output signifies three

related inputs labeled H. The probability of output from the

gate is P(H) cubed. This should not be simplified by Boolean

techniques because the three events are similar to each other and

occur with equal probabilities, but they are not the same event (one

may happen without influencing the others). Two Boolean simplifi-

cations are done at the top event. These are not explicitly shown.

t
43

"* is so.etimes shown L = I + A + j + K

by juxtaposition in ' DBC + A + J + K
this figure L P(L) - P(D)*P(B)*P(C) + P(A) +

I°(F)*P(G) + p(H)3

I a D*E

= DAB + DBC + DAC

E = AB + BC + AC + ABC
=AB + BC + AC Gbfr

(either equally
likel to occur

OUTPUT MATRIX
NotA A

Not B 8 Not8 B
Not C Not C X

C •c c I>c lcI
A AB

Figure 14. Example Three Fault Tree

44

Example Four

Example four, like example three, is a tree only, with symbols

for events and no probabilities assumed. It uses the Boolean

identity of the form a + a*b = a three times and the identity

a*a = a once. Only AND and OR gates are used to show the develop-

ment of Boolean equations for each combination event represented

by a rectangle. Boolean simplifications are made as soon as an

opportunity appears.

45

L- N_ D 0+ A + C*H + D*H + D + A*E + J= + +A + C*H + i

=D +A*B+ A
=D+A

[-j L = G*H M = D + I + J
=L C*H + D*H " = D + A*E + N

F iuA*B G C + D I E A*E

Figure 15. Example Four Fault Tree

CHAPTER VI

COMPUTER TECHNIQUES

The fault tree of example one clearly showed that the trans-

mitter was responsible for a majority of the failures, but in

systems costing millions of dollars (with fault trees done by

dozens of men working many months), the most likely failure p~ths

through the tree cannot be found by inspection. Instead, computer

simulations are used to find the basic failures most likely to

describe a path up to the top event. Two simulation techniques

are described here.

A Monte Carlo procedure applied to a fault tree consists of

picking random numbers between zero and one to simulate a component's

operation. For example, if a component is expected to fail 5%

of the time, a random number between zero and .05 would be a

simulated failure and a random number between .05 and one would

be a simulated success. The procedure is to pick a different

random number for each bottom event of the tree. After the success

or failure of each event is simulated, the failures are traced

upward through the logic gates to find whether the top event is

achieved.

When the top failure is simulated, the path up the tree

(or the responsible primary failures at the bottom) is noted and

46

t47

a new set of random numbers is chosen. Examination of all the

simulated system failures shows the path most likely to cause the

failure. If in a million trials, system failures occur 100 time3,

perhaps half the failures are due to one set of causes and the

other 50 failures due to different causes. The two sets can be

redesigned for more reliable or safer operation.

The drawback to straightforward Monte Carlo simulation is

time. Too many trials are necessary to simulate a meaningful

number of failures because the components are very reliable and

the probabilities are extremely low. Hixenbaugh (1968) gives the

following figures showing size of trees and simulation time. Trees

may have two or three hundred gates with perhaps two hundred bottom

events and many possible paths leading to the top failure. These

paths are so unlikely that it may take ten million trials to simu-

late a meaningful number of failures. If each trial takes one-tenth

second, 275 hours of computer time is necessary. This 's expensive

and unwieldy.

To make a higher proportion of trials lead to the top failure,

the probability of the bottom events are artificially increased

for the purpose of simulation. I- this technique, called importance

sampling, (mentioned by Schroder [1968], and Hixenbaugh [1968)),

the bottom failures are usually raised enough that one thousand

trials will give a significant number of failures.

The last advanced topic mentioned here, the Lambda-Tau

method, is used in the situation of faults which are detectable

48

and reparable within the time limits defined for the top event.

Consider a man on his way to work in the morning stopping at a

newstand for the newspaper. When he returns to his car and turns

the key, nothing happens. His horn does not blow either, so he

opens the hood, cleans some corrosion from the battery terminals

and drives to work on time. His car suffered a failure which was

detected and repaired without interfering with anything more serious

than leisure time.

In a system with detectable and reparable faults, the failures

come and go periodically. The top event occurs only if the right

combination of faults are present at one time. In the Lambda-Tau

technique, which is programmed for the IBM 7094 computer, several

assumptions are necessary. First, the primary failure rate

(lambda) must be small, and secondly, the duration time of the

hazard (tau) must be small compared to the time limits of operation

of the system. When these two assumptions are met, the program is

valuable for reparable systems of medium size.

The techniques described above complete this fault tree

manual by indicating how the basic principles of the first four

chapters are used in analyzing actual systems. In addition to

safety applications in complex systems, the tree concept has

potential in production control and operator's manuals (such as

example two), two problems which have contributing factors in a

cause and effect relationship contributing to an undesired event.

Fault tree analysis is certainly not a cure-all, but it has made

t 4

a significant contribution to the field of safety and perhaps will

be extended to other areas.

t

9

BIBLIOGRAPHY

Arnold, B.H., Logic and Boolean Algebra, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1962.

Bowran, A.P., Boolean Algebra, Macmillan and Company Ltd., London,
England, 1965.

Driver, E.T., "Prediction of Accident Probability," paper presented
at the Thirteenth Annual Western Safety Congress, Los Angeles,
California, April 7, 1966.

Eckberg, C.R., "WS-133B Fault Tree Analysis Program Plan," The
Boeing Co., Seattle, Washington, December 1963.

Feutz, R.J., "Application of Fault Tree Analysis to Dynamic
Systems," presented at the System Safety Symposium, Seattle,
Washington, June 1965.

Feutz, R.J. and Tracy, J.P., "Introduction to Fault Tree Analysis,"
The Boeing Co., Seattle, Washington, September 1965.

Gilmore, H.L.; Woodcock, R.W.; Jewell, R., "Minuteman Mark IIA
Reentry Vehicle System Safety Engineering Plan," AVCO Corp.,
Wilmington, Mass., January 1964.

Gottfried, P.; Jettner, E.; Weiss, D, et al, "Evaluation of Relia-
bility Prediction Techniques for Entire Flight Control Systems,"
Booz, Allen Applied Research Inc., Bethesda, Md., March 1968

Haasl, "Advanced Concepts in Fault Tree Analysis," presented at the
System Safety Symposium, Seattle, Washington, June 1965.

Hiltz, P.A., "The Fundamental of Fault Tree Analysis," North
American Aviation, Inc., Downey, California, November 1965.

Hixenbaugh, A.F., "Fault Tree for Safety," The Boeing Co., Seattle,
Washington, November 1968.

Kanda, "Concept of System Safety Math," presented at the System
Safety Symposium, Seattle, Washington, June 1965.

Larsen, W.F., "Fault Tree Analysis," Picatinny Arsenal, Dover, N.J.,
November 1968.

50

51

McDevitt, J.A.; Goldberg, M.I.; Cornwell, C.E., "The Systems
Concept for a Hazard Analysis of Large Solid Propellant Rocket
Motors," Naval Ordnance Station, Indian Head, Maryland, November
1968.

Mearns, A.B., "Fault Tree Analysis: The Study of Unlikely Events
in Complex Systems," presented at the System Safety Symposium,
Seattle, Washington, June 1965.

Michels, "Computer Evaluation of Fault Tree Model," presented at
the System Safety Svmposium, Seattle, Washington, June 1965.

Nagel, P., "Monte Carlo Method to Compute Fault Tree Probabilities,"
presented at the System Safety Symposium, Seattle, Washington,
June 1965.

Peller, J.B., "Fault Tree Analysis as a Tool for System Safety
Engineering," North American Aviation, Autonetics Division,
Anaheim, California, June 1965.

Pfeiffer, P.E., Concepts of Probability Theory, McGraw-Hill Book
Co., New York, 1965.

Recht, J.L., "System Safety Analysis: The Fault Tree," National
Safety News, Vol. 93 #4, April 1966, pp. 37-40.

Schroder, R.J., "Fault Tree Simulation with Importance Sampling,"
The Boeing Co., Seattle, Washington, March 1968.

Thorns, N.M., "A Fault Tree Model of the Man/Machine Interface in
a Manned Space System," The Boeing Co., Seattle, Washington,
August 1966.

Waldeck, T.A. and McMurdo, R.B., "System Safety Engineering
Analysis Techniques," The Boeing Company, Seattle, Washington,
February 1968.

Walker, R.Y., "Human Factors in Fault Tree Analysis," The Boeing
Co., Seattle, Washington, March 1966.

